67.430/1

RLP 100 F903, F908: Pneumatic volume-flow transducer

How energy efficiency is improved

Enables the demand-led control of the air volume in fume cupboards, laboratories and clean rooms.

Areas of application

In combination with an orifice plate or a dynamic pressure sensor, measurement of the actual volume flow in the case of dust-laden or contaminated air in ventilation systems.

Features

- Square-root-extracted output signal can be used as a command variable for extended control loops
- Special version for the measurement of aggressive gases available
- ATEX certification for use in Zone 1 potentially explosive areas
- Conformity tested as per EN 13463-1 and EN 1127-1 (Ex II 2 G T6)
- Highly accurate, static differential pressure sensor with large measuring range (1 to 160 Pa)
- Controller front panel is printed with circuit diagram for rapid identification of function
- Glass-fibre-reinforced thermoplastic housing suitable for wall or top-hat rail mounting (rail EN 60715)
- Compressed-air connections with Rp 1/8" female thread
- Special measuring connection for recording the volume flow with M4 connector
- Low-pressure connections in form of stepped nipples for flexible plastic hose (internal Ø 4 and 6 mm)
- Complies with directive 97/23/EC Art. 3.3 on pressure equipment

Technical description

- Supply pressure 1.3 bar ± 0.1
- Response sensitivity of sensor 0.1 Pa
- Linearity, square root extraction accuracy 2%
- One input for:
 - setpoint adjustment ΔV
- One output for:

0297354 000*

0297762 001

0274571 000

0297870 001*

*)

1)

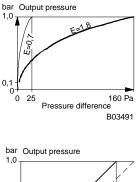
2)

3 pcs required

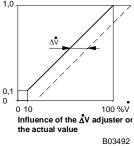
Dimension drawing or wiring diagram are available under the same number

Factory setting (E = 1,8); using the adjuster E, this can be reduced to 1...25 Pa (E = 0,7)

- actual volume flow value
- One adjuster for adjusting the sensor measuring range
- One setpoint adjuster for limiting setpoint adjustment ΔV to max. +/- 20% Туре Description Measuring range Weight Pressure difference 1) Air volume Pa % V kg **RLP 100 F903** 0.6 10...100 1,6...160 **RLP 100 F908** 10...100 1.6...160 0.6 for aggressive gases 0,1 Pa Output pressure 0,1...1,0 bar Response sensitivity 3...20% **V** Linearity, square-root error Input: setpoint shift $\Delta \mathbf{\dot{V}}$ Usable range p_{stat} 0...3000 Pa between 20...100% V 2% of V 100 Permissible pressure between 10...20% V 4% of **V** ₁₀₀ (low-pressure connections) 3000 Pa 0...55 °C Permissible amb. temp. Supply pressure 2) 1.3 bar ± 0.1 Air capacity 320 l_n/h 38 l_n/h A02884 Air consumption Connection diagram Type of protection IP 30 Dimension drawing M297570 Fitting instructions MV 505019 Accessories


Short screw-type connector (R ¹/₈) for soft plastic tubing, internal Ø 4 mm;

Fixing bracket for fitting the controller to ceilings, floors or panels.


See Section 60 on regulations concerning the quality of supply air, especially at low ambient temperatures

Restrictor Ø 0,8 mm for attenuating turbulent low-pressure signals; 2 pcs required

Restrictor Ø 0,5 mm for attenuating turbulent low-pressure signals; 2 pcs required

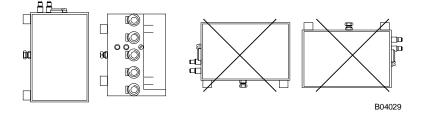
Y03487

PD/F

Operation

The pressure difference (1,6...160 Pa) created at the orifice plate or dynamic pressure sensor is converted by the root-extracting transducer into a fluidic-linear standard signal (0,1...1,0 bar). The standard signal is proportionate to the air volume or air speed. A de-coupling amplifier is incorporated to de-couple the measuring system from the output signal.

The measuring range for the pressure difference is set via adjuster E. When E = 1,8, the range is 1,6...160 Pa (factory setting); when E = 1,4 the range is 1...100 Pa (evaluative output pressure 0,2...1,0 bar, measurable air volume 20...100%). When E = 0,7, the range is only 1...25 Pa because pressure differences smaller than 1 Pa cannot be measured (evaluative output pressure 0,2...1,0 bar, measurable air volume 20...100%).


The transducer's output signal can be reduced by 3...20 % \checkmark at the $\Delta \checkmark$ adjuster. Therefore, the controller is given the false impression of a lower air volume. A difference arises between the supply- and the exhaust-air volumes, causing over- or under-pressure in the room (as long as the supply-air controller is fitted with an $\Delta \checkmark$ adjuster). The output signal can be adjusted externally via terminal 8; the value set at the $\Delta \checkmark$ adjuster becomes the minimum limitation.

Additional function for RLP 100 F908

In order to protect the measuring diaphragm from aggressive gases, a very small amount of air is fed constantly into the '+ and -' low-pressure line.

Engineering and fitting notes

The unit should not be fitted laterally (as depicted below, right).

In order to prevent turbulence which, in the form of oscillations, affects the low-pressure signal, there should be a smoothing sector in front of the measuring cross for the measurement of differential pressure.

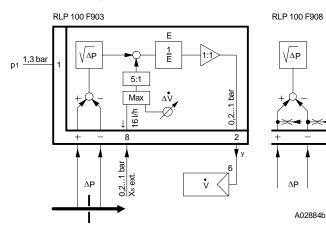
Where the flow may be problematical – e.g. right-angles, bends or junctions directly in front of the measuring cross –, a restrictor should be fitted into the plastic tubing of the '+ and –' connection in order to attenuate turbulent low-pressure signals.

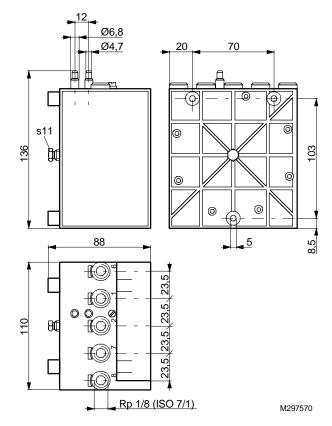
Technical information

Technical manual: VAV 7 000 621 003

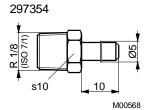
Additional information on accessories

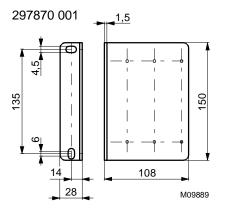
0297762 001 Restrictor (Ø 0.8 mm) for damping turbulent low-pressure signals; push-on connector for soft plastic tubing of \emptyset 4 mm internal. If the damping is insufficient, a \emptyset 0,5 mm restrictor can be used instead (accessory no. 0274571; not suitable for RLP 100 F908, F914, F123).

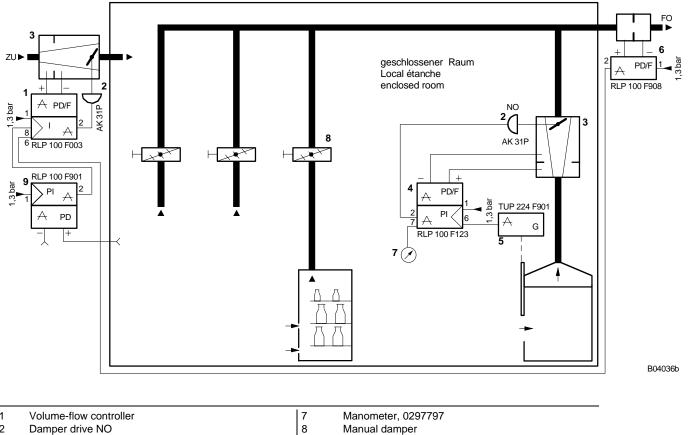

Restrictor (Ø 0,5 mm) for damping turbulent low-pressure signals; push-on connec-0274571 000 tor for soft plastic tubing of Ø 4 mm internal. Used in extreme cases where the Ø 0,8 mm restrictor has proved to be inadequate. Unsuitable for any volume-flow controllers (RLP 100 F914 and F123) and transducers (RLP 100 F908) that have a very small amount of air fed constantly into the '+ and -' low-pressure line, since the pressure signals in the lower part of the measuring range are falsified, and the positioning time of 1...2 seconds (RLP 100 F123) is not attained.


Connection diagram

 Δp = pressure difference = output pressure


у


Dimension drawing


Accessories

Example of use

Volume of return air controlled in proportion to the amount that the fume cupboard's sash is opened, with VAV transducer, for aggressive gases.

2Damper drive NO8Manual damper3Pressure-release unit9Pressure controller4VAV return-air controller for fume cupboardsFOEA (exhaust air)	
$4 = \frac{1}{2} = $	
4 VAV TERUITI-all controller for runne cuppolarus (FO EA (exitatist all)	
5 Path-measuring transmitter ZU SA (supply air)	
6 Volume-flow transducer for aggressive gases NO = normally open	